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Abstract

Motivated by problems arising in random sampling of trigonometric poly-
nomials, we derive exponential inequalities for the operator norm of the dif-
ference between the sample second moment matrix n�1U�U and its expec-
tation where U is a complex random n � D matrix with independent rows.
These results immediately imply deviation inequalities for the largest (small-
est) eigenvalues of the sample second moment matrix, which in turn lead to
results on the condition number of the sample second moment matrix. We
also show that trigonometric polynomials in several variables can be learned
from const �D lnD random samples.
Keywords: eigenvalues; exponential inequality; learning theory; random

matrix; random sampling; trigonometric polynomial.

1 Introduction

Let U be a complex random n � D matrix with independent rows. The matrix of
(non-centered) sample second moments is then given by n�1U�U . We provide expo-
nential probability inequalities for the operator norm of the di¤erence between the
sample second moment matrix and its expectation. These results immediately imply
deviation inequalities for the largest (smallest) eigenvalues of the sample second mo-
ment matrix. As a consequence we obtain probability inequalities for the condition
number of the sample second moment matrix. Sample second moment matrices arise
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as central objects of interest in many areas, such as multivariate analysis, stochastic
linear regression, time series analysis, and learning theory.
Our motivation comes from learning theory and, in particular, from random

sampling of trigonometric polynomials. Random sampling is a strategy of choice for
learning an unknown function in a given class of functions. This idea is predomi-
nant in the version of learning theory and sampling theory by Cucker, Smale, and
Zhou [7, 15]. In Bass and Gröchenig [1] the randomization of the samples was used
for the justi�cation of numerical algorithms. Random sampling and random mea-
surements are central in the emerging �eld of sparse reconstruction, also referred to
as compressed sensing [3, 4, 6, 8, 10, 11, 13].
In this paper, we revisit the random sampling of trigonometric polynomials with

a given degree or support, which was �rst studied in [1]. We �rst review and supple-
ment the probability inequalities for the condition number of the associated Fourier
sample second moment matrix in [1] (Section 2). In Section 3 we replace Fourier
matrices by general random matrices with independent rows and derive probability
estimates for sample second moment matrix obtained from general random matri-
ces U . Our main result is an exponential probability inequality for the condition
number of the sample second moment matrix for a vast class of random matrices.
These include randommatrices with independent identically distributed (i.i.d.) rows
and bounded entries. The boundedness assumption on the entries can be relaxed
to the existence of �nite moment generating functions. Our proof is much simpler
than the one in [1] and allows us to incorporate the case of random matrices with
independent, but not necessarily identically distributed rows. This rather technical
extension is treated in Section 3.2.
A further feature of our results is that all constants are given explicitly as a

function of the parameters that describe the distribution of the random matrices.
The explicit form of the constants is important to determine the sample size for
which the condition number of the sample second moment matrix is small with high
(�overwhelming�) probability.
Mendelson and Pajor [9] have recently found a related, beautiful and deep in-

equality for the sample second moment matrix of random matrices. While in the
same spirit, their assumptions, methods, and conclusions are di¤erent, and so their
and our results are not directly comparable in that neither result implies the other.
The inequality of [9] involves an unspeci�ed absolute constant so that the main
contribution is an asymptotic bound for the condition number as the sample size n
tends to in�nity. A detailed comparison between [9] and our result will be given in
Section 3.1.1.
In learning theory one is often interested in the e¢ ciency of the sampling pro-

cedure, i.e., in Cucker and Smale�s words [7], �how many random samples do we
need to assert, with con�dence 1 � �, that the condition number does not exceed
a given threshold.� For random sampling of trigonometric polynomials in several
variables inspection shows that the probability inequalities in [1], as well as the ones
in Section 3 of the present paper, lead to lower bounds for the required sample size
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that are typically of the order D2 lnD. We show in Section 3.1.1 how the result in
[9] can be used to improve this order to D lnD. In Section 4 this result is further
improved by using the method developed in [10] (after inspiration from [3]). To put
it more casually, these results show that we need const �D lnD random samples to
learn a trigonometric polynomial taken from a D-dimensional space. This seems to
be the optimal order that can be expected in a probabilistic setting.
Notation. By k � k2 we denote the usual Euclidean norm on CD. For a (her-

mitian) matrix A we denote by �max(A) and �min(A) the maximal and minimal
eigenvalues of A. The condition number of A is then given by �max(A)=�min(A).
For a matrix A its transpose is denote by A0 and its conjugate-transpose by A�.
The operator norm of a matrix is kAk = �max(A

�A)1=2. By P we denote the prob-
ability measure on the probability space supporting all the random variables used
subsequently, and E denotes the corresponding expectation operator.

2 Random Sampling of Trigonometric Polynomi-
als

Let � be a (non-empty) �nite subset of Zd. By P� we denote the space of all
trigonometric polynomials in dimension d with coe¢ cients supported on �. Such a
polynomial has the form

f(x) =
X
k2�

ake
2�ik�x; x 2 [0; 1]d

with coe¢ cients ak 2 C. If � = f�m;�m + 1; : : : ;m � 1;mgd, then P� is the
space of all trigonometric polynomials of degree at most m. We let D = j�j be the
dimension of P�.
Let x1; : : : ; xn 2 [0; 1]d. We are interested in the reconstruction of a trigonometric

polynomial f from its sample values f(x1); : : : ; f(xn). Let y = (f(x1); : : : ; f(xn))
0

be the vector of sampled values of f and let U be the n�D matrix with entries

utk = e2�ik�xt ; k 2 �; t = 1; : : : ; n: (2.1)

The reconstruction of f amounts to solving the linear system

Ua = y

for the coe¢ cient vector a = (ak)k2�. Alternatively, one may try to solve the normal
equation

U�Ua = U�y:

We note that the invertibility of U�U is equivalent to the sampling inequalities

Akfk22 �
nX
t=1

jf(xt)j2 = a�U�Ua � Bkfk22 for all f 2 P� ; (2.2)
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for some positive real numbers A and B, and that the condition number of U�U is
bounded by B=A.
In the spirit of learning theory, one assumes that the sampling points are taken

at random. Then the matrix U�U is a random matrix depending on the sampling
points (xt). Several questions arise:

1. Determine the probability that U�U is invertible.

2. Determine the probability that the condition number of U�U does not exceed
a given threshold.

3. Determine the number of random samples required to achieve such estimates.
This is the e¤ectivity problem for random sampling.

For trigonometric polynomials Question 1 has been answered in [1, Thm. 1.1]: If
the xt are i.i.d. with a distribution that is absolutely continuous with respect to the
Lebesgue-measure on [0; 1]d, then U�U is invertible almost surely provided n � D.
Furthermore, some answers to Questions 2 and 3 are also provided in [1]. It

is shown that U�U is well-conditioned whenever the number of samples is large
enough [1, Thms. 5.1, 6.2]:

Theorem 2.1. Assume that x1; : : : ; xn are i.i.d. random variables uniformly dis-
tributed on [0; 1]d. Let U be the associated random Fourier matrix de�ned in (2.1).
Let " 2 (0; 1). There exist positive constants A;B depending only on D = j�j such
that the event

1� " � �min(n
�1U�U) � �max(n

�1U�U) � 1 + "

has probability at least
1� Ae�Bn"

2=(1+"): (2.3)

In particular, with probability not less than (2.3), the condition number of U�U is
bounded by (1 + ")=(1� ").

A careful analysis of the constants A and B in (2.3) reveals that the number of
samples required in (2.3) to guarantee a probability � 1� � is

n � CD2 lnD; (2.4)

where C depends on � and ". If � = f�m; : : : ;mgd (trigonometric polynomials of
degree m in d variables), then D = (2m + 1)d, and this bound on the number of
samples is unfortunately too large to be useful at more realistic sample sizes like
n � D or n � D lnD.
For the case � = f�m; : : : ;mgd a better estimate for the condition number can

be extracted from [1]. We work, however, with a slightly di¤erent matrix. Given
the sampling points x1; : : : ; xn, we de�ne the Voronoi regions

Vt := fy 2 [0; 1]d : ky � xtk2 � ky � xsk2; s 6= t; 1 � s � ng; t = 1; : : : ; n
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and let wt = jVtj be the Lebesgue measure of Vt. We consider the weighted matrix
Tw

Tw := U�WU

where W is the diagonal matrix with the weights wt, t = 1; : : : ; n, on the diagonal.
Note that a is also the solution of Twa = U�Wy. The following result is implicit
in [1].

Theorem 2.2. Let � = f�m; : : : ;mgd, i.e., we consider trigonometric polynomials
of d variables of degree m. Suppose that x1; : : : ; xn are i.i.d random variables which
are uniformly distributed on [0; 1]d. Choose  2 (0; 1). If

n �
�
2�d

 ln 2

�d
md ln

 �
2�d

 ln 2

�d
md

�

!
; (2.5)

then with probability at least 1�� the condition number of Tw is bounded by (1� 2�1)�2.

Proof: By combining a deterministic estimate with a probabilistic covering result,
the following estimate was derived in [1, Thm. 4.2]: Let N 2 N be arbitrary; then
with probability at least 1�Nde�n=N

d
we have

(2� e2�md=N)2 � �min(T
w) � �max(T

w) � 4 :

For the condition number to be bounded by 4 (2� 2)�2 with probability at least
1� �, we need that

2�md=N �  ln 2 and Nde�n=N
d � � :

By solving for n, we �nd that n must satisfy the inequality (2.5).

Since D = j�j = jf�m;�m + 1; : : : ;m � 1;mgdj = (2m + 1)d, Theorem 2.2
becomes e¤ective for

n � (�d)dD ln
�
(�d)dD

�
: (2.6)

Thus Theorem 2.2 is a genuine improvement over (2.4) for �xed value of d. The
dependence n � D lnD on the dimension of the function space seems to be of the
correct order. However, the constant (�d=)d depends strongly on the number of
variables d, and so Theorem 2.2 does not escape the curse of dimensionality.
In Theorem 4.1 we will prove a much better result for the condition number of

U�U where the constants do neither depend on d nor on the special form of the
spectrum �. See also Corollary 3.5.

3 Exponential Inequalities For Sample SecondMo-
ment Matrices

In this section we abstract from the concrete form of U as given in (2.1) and consider
arbitrary complex randommatrices with independent rows satisfying some regularity
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conditions. Apart from being of interest in its own, this more general setting allows
one to study random sampling not only for trigonometric polynomials but also for
more general types of �nite-dimensional function spaces, such as random sampling
of algebraic polynomials on domains, or of spaces of spherical harmonics on the
sphere (see [1, Sect. 6] for a list of examples).

3.1 The I.I.D. Case

We assume �rst that the random matrix U 2 Cn�D has independent identically
distributed rows and delay the discussion of the case of independent, but not iden-
tically distributed rows to Section 3.2. Furthermore, we assume that the rows ut� =
(ut1; : : : ; utD) of U satisfy the following condition: The moment generating functions
of the random variables Re(u1ku1j) and Im(u1ku1j) exist for all 1 � k; j � D; i.e.,
there exists x0 > 0 such that for all 1 � k; j � D

E [exp(xRe(u1ku1j))] <1; E [exp(x Im(u1ku1j))] <1 (3.1)

hold for all x < x0. Note that a su¢ cient condition for (3.1) is that the moment
generating function of ju1kj2 + ju1jj2 exists for all k; j. Further, we let

Q := E(u�1�u1�) 2 CD�D

with entries qkj. We note that by the strong law of large numbers n�1U�U converges
to Q = E[n�1U�U ] almost surely.
Assumption (3.1) is easily seen to be equivalent to the existence of �nite constants

M � 0 and vkj � 0 such that for all ` � 2

E
�
jRe(u1ku1j � qkj)j`

�
� 2�1`!M `�2vkj; (3.2)

E
�
j Im(u1ku1j � qkj)j`

�
� 2�1`!M `�2vkj (3.3)

hold for all 1 � k; j � D. For a generalization leading to a slightly better, but more
complex bound see Section 3.2.

Remark 3.1. If the random variables u1k are bounded, i.e.,

jRe(u1ku1j � qkj)j � C and j Im(u1ku1j � qkj)j � C

holds with probability 1 for all 1 � k; j � D, then (3.2) and (3.3) hold withM = C=3
and

vkj = maxfE
�
(Re(u1ku1j � qkj))

2
�
;E
�
(Im(u1ku1j � qkj))

2
�
g: (3.4)

This claim is obvious for ` = 2. For ` � 3 it follows from a general inequality for
arbitrary real-valued bounded random variables X:

E
�
jXj`

�
= E

�
X2jXj`�2

�
� C`�2E[X2] = `!

C`�2

`!
�2 � `!

C`�2

2 � 3`�2�
2;

where �2 = E[X2] and jXj � C holds with probability 1. In particular, this shows
that the random Fourier matrix given in (2.1) satis�es (3.2) and (3.3). �

6



The proof of the main result in this section will make use of the following
Bernstein-type inequality for unbounded random variables given in Bennett [2,
eq. (7)], see also [16, Lemma 2.2.11]:
Let X1; : : : ; Xn be independent real-valued random variables with zero mean such

that EjXtj` � `!M `�2vt=2 holds for every ` � 2 and t = 1; : : : ; n for some �nite
constants M � 0 and vt � 0. Then for every x > 0

P

 �����
nX
t=1

Xt

����� � x

!
� 2e�

x2

2 (
Pn
t=1 vt+Mx)

�1

; (3.5)

with the convention that the right-hand side in (3.5) is zero if M = 0 and
Pn

t=1 vt =
0.
Note that Bennett [2] assumes

Pn
t=1 vt > 0 but the inequality (3.5) trivially also

holds for
Pn

t=1 vt = 0 in which case the probability on the left-hand side is zero.
Inequality (3.5), and hence the subsequent results, can be somewhat improved, see
Bennett [2, eq. (7a)]. Since this does not result in any signi�cant gain, we do not
give the details.
Set

v := max
1�k;j�D

vkj:

Note that neither v norM depend on n because the rows are identically distributed.
However, they depend on the distribution of the random vector u1� and hence may
depend on D. Our main result now reads as follows.

Theorem 3.1. Assume that the rows u1�; : : : ; un� of U are i.i.d. random vectors in
CD whose entries satisfy the moment bounds (3.2) and (3.3). Then, for every " > 0,
the operator norm satis�es n�1U�U �Q

 < "

with probability at least

1� 4D2 exp

 
� n"2

D2
�
4v + 2

p
2D�1M"

�! : (3.6)

In particular, with probability not less than (3.6) the extremal eigenvalues of n�1U�U
satisfy

�min(Q)� " < �min(n
�1U�U) � �max(n

�1U�U) < �max(Q) + " : (3.7)

Consequently, if Q is non-singular and " 2 (0; �min(Q)), then the condition number
of U�U is bounded by �max(Q)+"

�min(Q)�" with probability not less than (3.6).

In connection with (3.7) we note that �min(n�1U�U) � 0 holds trivially, since
the matrix n�1U�U is nonnegative de�nite.

Proof: We �rst note that inequality (3.7) for the extremal eigenvalues of n�1U�U
follows from the inequality kn�1U�U �Qk < " for the operator norm. Hence, it
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su¢ ces to concentrate on the operator norm, which we majorize with Schur�s test
by using that kAk � maxk

P
j jakjj for self-adjoint A. In this way we obtain that

P(
n�1U�U �Q

 � ") � P
 
max

k=1;:::;D

DX
j=1

�����n�1
nX
t=1

(utkutj � qkj)

����� � "

!

�
DX
k=1

P

 
DX
j=1

�����n�1
nX
t=1

(utkutj � qkj)

����� � "

!
�

DX
k;j=1

P

 �����n�1
nX
t=1

(utkutj � qkj)

����� � "=D

!

=

DX
k;j=1

P

0@�����n�1
nX
t=1

(utkutj � qkj)

�����
2

� ("=D)2
1A (3.8)

=
DX

k;j=1

P

0@�����n�1
nX
t=1

Re(utkutj � qkj)

�����
2

+

�����n�1
nX
t=1

Im(utkutj � qkj)

�����
2

� ("=D)2
1A

�
DX

k;j=1

P

 �����
nX
t=1

Re(utkutj � qkj)

����� � n"p
2D

!
+

DX
k;j=1

P

 �����
nX
t=1

Im(utkutj � qkj)

����� � n"p
2D

!
:

For each index k; j the inequality (3.5) gives

P

 �����
nX
t=1

Re(utkutj � qkj)

����� � n"p
2D

!
� 2 exp

 
� n"2

D2
�
4vkj + 2

p
2D�1M"

�! (3.9)

and similarly for the imaginary part. Hence, we �nally obtain

P
�
kn�1U�U �Qk � "

�
� 4

DX
k;j=1

exp

 
� n"2

D2
�
4vkj + 2

p
2D�1M"

�!

� 4D2 exp

 
� n"2

D2
�
4v + 2

p
2D�1M"

�! (3.10)

with v as de�ned above. Thus (3.6) follows.

Remark 3.2. If u1: possesses an absolutely continuous distribution then Q is auto-
matically non-singular. More generally, this holds as long as the distribution of u1:
is not concentrated on a (D � 1)-dimensional linear subspace of CD. To see this,
consider the quadratic forms z�Qz for z 2 CD and note that

z�Qz = E[z�u�1�u1�z] = E[ju1�zj
2] � 0:

Hence, if z�Qz = 0, then ju1�zj2 = 0 with probability 1; thus the distribution of u1:
would have to reside in the orthogonal complement of the one-dimensional subspace
spanned by z�. �
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Remark 3.3. For real-valued random matrices U we can improve the probability
bound (3.6) to

1� 2D2 exp

 
� n"2

2D2
�
v + M"

D

�! :
A similar improvement for real-valued U applies to the subsequent corollary and
remark as well as to the results in Section 3.2. �

Corollary 3.2. Assume that the rows u1�; : : : ; un� of U are i.i.d. random vectors in
CD that are bounded, i.e.,

jRe(u1ku1j � qkj)j � C and j Im(u1ku1j � qkj)j � C

holds with probability 1 for or all 1 � k; j � D. Let

b := max
k;j=1;:::;D

�
E
�
(Re(u1ku1j � qkj))

2
�
;E
�
(Im(u1ku1j � qkj))

2
�	
:

Then the conclusions of Theorem 3.1 hold and (3.6) becomes

1� 4D2 exp

 
� n"2

D2
�
4b+ 2

p
2D�1C"=3

�! : (3.11)

Proof: By Remark 3.1 conditions (3.2) and (3.3) hold with M = C=3 and vkj as
in (3.4). Then the statement follows from Theorem 3.1.

Remark 3.4. Corollary 3.2 can also be derived by using the classical Bernstein in-
equality instead of inequality (3.5) in the proof of Theorem 3.1. Furthermore, the
bound in (3.11) can be somewhat improved by using an improved form of Bernstein�s
inequality [2, eq. (8)] (see also [5, Corollary A.2]) for bounded random variables in-
stead of (3.5) in that step: If we use that inequality in the estimate (3.9), we arrive
at the following improved bound (provided C > 0, b > 0):

1� 4D2 exp

�
�C�2nb

��
1 +

C"p
2Db

�
ln

�
1 +

C"p
2Db

�
� C"p

2Db

��
:

�
Let us now apply our �ndings to random sampling of trigonometric polynomials.

Corollary 3.3. Let x1; : : : ; xn be independent random variables uniformly distrib-
uted on [0; 1]d. Let U be the associated n � D random Fourier matrix (2.1). Let
" > 0. Then with probability at least

1� 4D(D � 1) exp
 
� n"2

2
�
(D � 1)2 +

p
2(D � 1)"=3

�! (3.12)

we have n�1U�U �Q
 < "; (3.13)
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and hence
1� " < �min(n

�1U�U) � �max(n
�1U�U) < 1 + " : (3.14)

Consequently, for 0 < " < 1, the condition number of U�U is bounded by (1+")=(1�
") with probability not less than (3.12).

Proof: In this case (n�1U�U)kj = n�1
Pn

t=1 e
2�i(j�k)�xt and consequently Q = I,

so �min(Q) = �max(Q) = 1. [By abuse of notation, k denotes both an element of �
and a column index.] Furthermore,

Pn
t=1(utkutj � qkj) = 0 for k = j. Hence, the

double sum in the second line of (3.8) only extends over j 6= k and consequently
"=D can be replaced by "=(D � 1) in the subsequent steps in (3.8). Furthermore,
when deducing (3.10) from the union bound in (3.8) we only have to take into
account D(D � 1) instead of D2 summands; cf. also Remark 3.8 below. Moreover,
jRe(utkutj � qkj)j � 1 for all k; j. For k 6= j we have

E
�
Re(utkutj � qkj)

2
�
=

Z
[0;1]d

(Re(exp(2�i(j � k) � x))2dx = 1

2
;

hence vkj = 1=2. The same holds for the imaginary part. In view of Remark 3.1 the
result follows.

From the previous result it is easy to determine the minimal number of sampling
points su¢ cient to provide a small condition number with high probability.

Corollary 3.4. Let x1; : : : ; xn be independent random variables uniformly distrib-
uted on [0; 1]d. Let U be the associated n � D random Fourier matrix (2.1). Let
0 < " < 1; 0 < � < 1 and suppose

n � 2

"2

 
(D � 1)2 +

p
2(D � 1)"
3

!
ln

�
4D(D � 1)

�

�
: (3.15)

Then (3.13) and (3.14) hold with probability at least 1� �.

We note that (3.15) is implied by the more compact inequality

n � CD2 ln(D=�)

"2
(3.16)

for an appropriate constant C. We will improve on this result in Corollary 3.5 and
in Section 4, see in particular (4.2).

3.1.1 Comparison With Other Results

Recently Mendelson and Pajor [9] provide a related exponential inequality for ran-
dom matrices with i.i.d. real-valued rows. They assume the following properties:
(a) There exists � > 0 such that for every � 2 RD; k�k2 = 1, (Ejhu1�; �ij4)1=4 �

� <1.
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(b) Set Z = ku1�k2, then kZk � <1 for some � � 1.
Here the Orlicz norm k � k � of a real-valued random variable Y with respect to

 �(x) = exp(x
�) � 1 is de�ned as kY k � = inf fC > 0 : E � (jY j=C) � 1g. Note

that if � � 2, condition (b) is stronger than our assumption (3.1), hence condition
(b) implies (3.2)-(3.3).
Under conditions (a) and (b), Mendelson and Pajor [9, Theorem 2.1] show that

there exists an absolute constant c > 0 such that for every " > 0 the operator norm
satis�es

P(
n�1U�U �Q

 < ") � 1� 2 exp
 
�
�

c"

maxfBn; A2ng

��=(�+2)!
; (3.17)

where

An = kZk �

p
ln(min(D;n))(lnn)1=�p

n
; Bn =

�2p
n
+ �1=2max(Q)An:

We have added a factor 2 on the right-hand side of (3.17) to correct a missing
constant in [9, Theorem 2.1]. Since the constant c is not speci�ed, the value of
(3.17) is mainly for asymptotics as n ! 1, whereas the results of Section 3 yield
estimates with explicit constants for given n. Moreover, the probability estimate
(3.17) is only subexponential. For �xed dimension D, the right-hand side of (3.17)
is of the order

1� 2 exp
�
�c1n�=(2�+4)(lnn)�1=(�+2)

�
;

which is only subexponential, whereas the bound in (3.6) is exponential of the form

1� c2 exp (�c3n) :

Here c1, c2, and c3 are constants that depend on D. We also note that the proof of
Theorem 3.1 is quite simple and easily extends to the case of independent but not
necessarily identically distributed rows as shown in the next section.
Nevertheless, the result of Mendelson and Pajor [9, Theorem 2.1] can be used to

improve upon (3.15) in the special case where the set � is symmetric in the sense
that k 2 � implies �k 2 �.

Corollary 3.5. Let x1; : : : ; xn be independent random variables uniformly distrib-
uted on [0; 1]d. Let U be the associated n � D random Fourier matrix (2.1) and
assume that � is symmetric. Let 0 < " < 1; 0 < � < 1 and suppose

n � max
(
D; c�1"�1 ln

�
2

�

�
D lnD;

�
c�1"�1 ln

�
2

�

��2
(
p
D +

p
D lnD)2

)
(3.18)

where c is the absolute constant in (3.17). Then (3.13) and (3.14) hold with proba-
bility at least 1� �.
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Proof: Although it is possible to adapt [9] to complex-valued random matrices, we
will use the result as stated.
Since � is symmetric by assumption, we may write it as � [ (��) with � \

(��) � f0g. De�ne the real n � D matrix W by wt(�k) =
p
2 cos(2�k � xt) and

wtk =
p
2 sin(2�k � xt) for k 2 �nf0g and set wt0 = 1 if 0 2 �. Then clearly

U = WS where S is a unitary D � D matrix and consequently kn�1U�U � Ik =
kn�1W �W � Ik. To apply (3.17) we note that kw1�k2 = D1=2 and hence kZk � =
kkw1�k2k � = D1=2(ln 2)�1=� for every � � 1. Furthermore,

sup
k�k2=1;�2RD

(Ejhw1�; �ij4)1=4 = sup
k�k2=1;�2RD

(Ejhu1�S�; �ij4)1=4

= sup
k�k2=1;�2RD

(Ejhu1�; S�ij4)1=4

� sup
k�k2=1;�2CD

(Ejhu1�; �ij4)1=4:

Now, since
��P

k2� �k exp(2�ik � x1)
��2 � �Pk2� j�kj

�2
we obtain

Ejhu1�; �ij4 = E

24�����X
k2�

�k exp(2�ik � x1)
�����
4
35

�
 X
k2�

j�kj
!2
E

24�����X
k2�

�k exp(2�ik � x1)
�����
2
35

� Dk�k22 = D:

This shows that the rows wt� satisfy condition (a) in [9, Theorem 2.1] with � = D1=4.
As a consequence, (3.17) applies toW , and hence to the Fourier matrix U , for every
� � 1. Since the left-hand side of (3.17) does not depend on �, we may let �!1
and obtain for n � D the bound

P(
n�1U�U �Q

 < ") � 1�2 exp
�
�c"minfn1=2=(

p
D +

p
D lnD); n=(D lnD)g

�
:

The probability is not less than 1� � whenever condition (3.18) holds.

Comparing (3.18) with (3.15), we have gained on the exponent of D. However,
the quantity ln(��1) now enters quadratically instead of linearly, and an unspeci�ed
constant appears in the lower bound for n.

3.2 The Non-I.I.D. Case and Other Generalizations

In this section we generalize the results to the case where the random matrix U 2
Cn�D has independent rows which, however, need not be identically distributed. In
the course of this generalization we also obtain some slight improvements in the case

12



of i.i.d. rows discussed above. Apart from the assumption of independent rows, we
assume that the matrix U satis�es the following condition: The moment generating
functions of the random variables Re(utkutj) and Im(utkutj) exist for all 1 � t � n
and 1 � k; j � D; i.e., there exists x0 > 0 such that for all 1 � t � n and
1 � k; j � D

E [exp(xRe(utkutj))] <1; E [exp(x Im(utkutj))] <1 (3.19)

holds for all x < x0. Note that x0 will depend on the distribution of U and thus
may depend on n and D. Furthermore, we set

Q(t) := E(u�t�ut�) 2 CD�D

with entries q(t)kj and

Qn := n�1
nX
t=1

Q(t) = E[n�1U�U ] 2 CD�D: (3.20)

As in Section 3.1, assumption (3.19) is seen to be equivalent to the existence of
�nite constants M (t)

kj1 � 0, M
(t)
kj2 � 0, v

(t)
kj1 � 0, v

(t)
kj2 � 0, such that for all ` � 2

E
h
jRe(utkutj � q

(t)
kj )j`

i
� 2�1`! (M

(t)
kj1)

`�2v
(t)
kj1; (3.21)

E
h
j Im(utkutj � q

(t)
kj )j`

i
� 2�1`! (M

(t)
kj2)

`�2v
(t)
kj2 (3.22)

hold for all 1 � t � n and 1 � k; j � D. If M (t)
kjiv

(t)
kji = 0 then we may assume

without loss of generality that M (t)
kji = v

(t)
kji = 0.

For �xed n it is always possible to choose the constants on the right-hand side
of (3.21) and (3.22) independent of t. However, for n!1 the resulting conditions
in Theorem 3.6 below would become unnecessarily restrictive in the non-identically
distributed case. Furthermore, allowing the constants to depend on k; j and to be
di¤erent in (3.21) and (3.22), provides some extra �exibility which results in an
improved, albeit more complex bound even in the case of i.i.d. rows.
Remark 3.5. Condition (3.21) necessarily implies v(t)kj1 � �

(t)2
kj1 , where �

(t)2
kj1 denotes

the variance of Re(utkutj� q(t)kj ). Furthermore, observe that given condition (3.21) is
satis�ed, it is also always satis�ed with v(t)kj1 = �

(t)2
kj1 . [This is obvious if �

(t)2
kj1 = 0, and

otherwise follows by replacingM (t)
kj1 withM

(t)
kj1v

(t)
kj1=�

(t)2
kj1 , observing that v

(t)
kj1=�

(t)2
kj1 � 1

as noted before.] Similar comments apply to condition (3.22). �
Remark 3.6. If the random variables utk are bounded, i.e.,

jRe(utkutj � q
(t)
kj )j � C

(t)
kj1 and j Im(utkutj � q

(t)
kj )j � C

(t)
kj2

holds with probability 1 for all 1 � t � n, 1 � k; j � D, then (3.21) and (3.22) hold
with M (t)

kj1 = C
(t)
kj1=3, M

(t)
kj2 = C

(t)
kj2=3, and

v
(t)
kj1 = E

h
(Re(utkutj � q

(t)
kj ))

2
i
and v(t)kj2 = E

h
(Im(utkutj � q

(t)
kj ))

2
i
: (3.23)

This follows exactly as in Remark 3.1. �
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In order to present the generalization of Theorem 3.1 we introduce

vkj1n :=

nX
t=1

v
(t)
kj1; vkj2n :=

nX
t=1

v
(t)
kj2

and

Mkj1n = maxfM (t)
kj1 : 1 � t � ng; Mkj2n = maxfM (t)

kj2 : 1 � t � ng:

Furthermore, set vn = maxfvkj1n; vkj2n : 1 � k; j � Dg andMn = maxfMkj1n;Mkj2n :
1 � k; j � Dg. Note that vn and Mn depend on the distribution of the random
matrix U and hence may depend on D. The expression on the right-hand side of
(3.24) below is the direct generalization of (3.6) to the non-identically distributed
case, whereas the bound 1�	 given in (3.27) below is an improvement (even in the
case of i.i.d. rows).

Theorem 3.6. Assume that the rows u1�; : : : ; un� of U are independent random
vectors in CD whose entries satisfy the moment bounds (3.21) and (3.22). Then,
for every " > 0, the operator norm satis�esn�1U�U �Qn

 < "

with probability at least 1�	 where 	 is de�ned in (3.27) below. Furthermore,

1�	 � 1� 4D2 exp

 
� n"2

D2
�
4n�1vn + 2

p
2D�1Mn"

�! : (3.24)

In particular, with probability not less than 1�	, the extremal eigenvalues of n�1U�U
satisfy

�min(Qn)� " < �min(n
�1U�U) � �max(n

�1U�U) < �max(Qn) + " : (3.25)

Consequently the condition number of U�U is bounded by �max(Qn)+"
�min(Qn)�" with probability

not less than 1 � 	, provided that Qn de�ned in (3.20) is non-singular and " 2
(0; �min(Qn)).

Proof: Exactly as in the proof of Theorem 3.1 we arrive at

P(
n�1U�U �Qn

 � ") (3.26)

�
DX

k;j=1

P

 �����
nX
t=1

Re(utkutj � q
(t)
kj )

����� � n"p
2D

!
+

DX
k;j=1

P

 �����
nX
t=1

Im(utkutj � q
(t)
kj )

����� � n"p
2D

!
:

Again using inequality (3.5) for each k; j gives

P

 �����
nX
t=1

Re(utkutj � q
(t)
kj )

����� � n"p
2D

!
� 2 exp

 
� n"2

D2
�
4n�1vkj1n + 2

p
2D�1Mkj1n"

�!
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and similarly for the imaginary part. Hence, we �nally obtain P (kn�1U�U �Qk � ") �
	 where

	 = 2
2X
i=1

DX
k;j=1

exp

 
� n"2

D2
�
4n�1vkjin + 2

p
2D�1Mkjin"

�! (3.27)

� 4D2 exp

 
� n"2

D2
�
4n�1vn + 2

p
2D�1Mn"

�! :

Remark 3.7. A su¢ cient condition for Qn to be non-singular is that at least one
of the matrices Q(t) has this property. The argument in Remark 3.2 shows that
the latter is the case if the distribution of ut: is not concentrated on a (D � 1)-
dimensional linear subspace of CD. However, note the possibility that nevertheless
�min(Qn)! 0 as n!1. �
Remark 3.8. (i) In case the (k; j)-element of n�1U�U �Qn is zero with probability
1, the corresponding terms on the right-hand side of (3.26) are zero and do not
contribute to the bound in (3.26). Due to the independence assumption, the (k; j)-
element is zero if and only if utkutj � q

(t)
kj = 0 with probability 1 for every t. Hence,

we may set v(t)kj1 = v
(t)
kj2 = M

(t)
kj1 = M

(t)
kj2 = 0 which shows that the corresponding

terms in the bound 	 are also automatically zero. However, in this case the bound
(3.26) and the subsequent bounds can be improved in that in the (k; j)-th term in
both sums on the right-hand side of (3.26) the constant D can be replaced by Dk,
where Dk denotes the number of non-zero elements in the k-th row of n�1U�U�Qn.
(ii) A similar remark applies in the case that some or all elements of n�1U�U�Qn

are real (or imaginary). Cf. Remark 3.3.

4 Random Sampling of Trigonometric Polynomi-
als Revisited

We now return to the special case of sampling trigonometric polynomials on uni-
formly distributed random points and show how the results in the previous sections
can be improved. The analysis is based on techniques developed in [10] for the re-
covery of sparse trigonometric polynomials from random samples by basis pursuit
(`1-minimization) and orthogonal matching pursuit. Some of the ideas are inspired
by the pioneering work of Candès, Romberg and Tao in [3].

Theorem 4.1. Let � � Zd of size j�j = D and let x1; : : : ; xn be i.i.d. random
variables that are uniformly distributed on [0; 1]d. Let U be the associated random
Fourier matrix given by (2.1). Choose 0 < " < 1, 0 < � < "2, and � > 0. Ifj�n

3D

k
�
�
ln

�
"2

�

���1
ln

�
D

�(1� �)

�
; (4.1)
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then, with probability at least 1� �, we haven�1U�U � I
 < "

and hence
1� " < �min(n

�1U�U) � �max(n
�1U�U) < 1 + ":

Consequently, the condition number of U�U is bounded by 1+"
1�" with probability �

1� �.

For instance, the choice � = "2=e gives

n � 3De

"2

�
ln

�
D

�

�
+ 2� ln(e� 1)

�
(4.2)

as a simple su¢ cient condition.
Compared (4.2) with (3.15) or (3.16), we have gained on the exponent in D;

compared with Theorem 2.2 and (2.6), the constants are now independent of the
dimension d of the state space (= the number of variables); compared with (3.18),
the term ln(��1) only enters linearly in (4.1) and (4.2) instead of quadratically and
there is now no restriction on �. Moreover, the constants are explicit and small.

4.1 Proof of Theorem 4.1

We introduce the polynomials

Fm(z) =

bm=2cX
k=1

S2(m; k)z
k; m 2 N; (4.3)

where S2(m; k) are the associated Stirling numbers of the second kind. These are
connected to the combinatorics of certain set partitions, and they can be computed
by means of their exponential generating function, see [12, formula (27), p.77] or
Sloane�s A008299 in [14],

1X
m=1

Fm(z)
xm

m!
= exp

�
z(ex � x� 1)

�
: (4.4)

Further, we de�ne
Gm(z) := z�mFm(z): (4.5)

Using the Gm�s, we �rst establish a more general result from which Theorem 4.1
will follow.

Theorem 4.2. Let � � Zd of size j�j = D and let x1; : : : ; xn be i.i.d. random
variables that are uniformly distributed on [0; 1]d. Let U be the associated random
Fourier matrix given by (2.1), and let " > 0. Then, for every m 2 N, we haven�1U�U � I

 < ";
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and hence
1� " < �min(n

�1U�U) � �max(n
�1U�U) < 1 + " ;

with probability at least
1� "�2mDG2m(n=D):

Proof: Again, the estimates for the eigenvalues follow from the inequality kn�1U�U�
Ik < ". Furthermore, since n�1U�U � I is self-adjoint, we have for every m 2 N

kn�1U�U � Ik = k(n�1U�U � I)mk1=m � k(n�1U�U � I)mk1=mF ;

where k � kF denotes the Frobenius norm, kAkF =
p
Tr(AA�). Consequently,

P(kn�1U�U � Ik � ") � P(k(n�1U�U � I)mkF � "m):

We now apply Markov�s inequality and obtain that

P(k(n�1U�U � I)mkF � "m) � "�2mE
�
k(n�1U�U � I)mk2F

�
:

The latter expectation was studied in [10, Section 3.3], see also Lemma 3.3 in [10]:
It was shown that

E
�
k(n�1U�U � I)mk2F

�
� DG2m(n=D); (4.6)

which concludes the proof.

We now show how Theorem 4.1 follows from Theorem 4.2. This is done by
estimating Gm and by a diligent choice of the free parameter m.
We set the oversampling rate to be � = n=D. In [10, Section 3.5] it was shown

that

G2m(�) � (3m=�)m
1� (3m=�)m
1� (3m=�) :

For given 0 < � < 1 and �, we choose m = m(�) 2 N such that (3m(�)=�) � � < 1.
Note that this is possible since b�n=3Dc � 1 follows from the assumptions of the
theorem. In the following we will take the value

m(�) = b��=3c ;

and obtain that

G2m(�)(�) �
�m(�)

1� �
: (4.7)

In view of Theorem 4.2 we want to achieve "�2mDG2m(�) � �. By (4.7) this
inequality is satis�ed if

D"�2m(�)
�m(�)

1� �
� �;

which is equivalent to

ln
�"2
�

�
m(�) � ln

� D

(1� �)�

�
:

Since � < "2 by assumption, Theorem 4.1 follows.
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